Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Plant J ; 114(1): 159-175, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710658

RESUMEN

The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Humanos , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Fototransducción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Cells ; 11(24)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36552730

RESUMEN

Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.


Asunto(s)
Cnidarios , Evolución Molecular , Animales , Opsinas/genética , Fototransducción/genética , Células Fotorreceptoras
3.
Genes (Basel) ; 13(2)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35205309

RESUMEN

Advanced age is one of the leading risk factors for vision loss and eye disease. Photoreceptors are the primary sensory neurons of the eye. The extended photoreceptor cell lifespan, in addition to its high metabolic needs due to phototransduction, makes it critical for these neurons to continually respond to the stresses associated with aging by mounting an appropriate gene expression response. Here, we sought to untangle the more general neuronal age-dependent transcriptional signature of photoreceptors with that induced by light stress. To do this, we aged flies or exposed them to various durations of blue light, followed by photoreceptor nuclei-specific transcriptome profiling. Using this approach, we identified genes that are both common and uniquely regulated by aging and light induced stress. Whereas both age and blue light induce expression of DNA repair genes and a neuronal-specific signature of death, both conditions result in downregulation of phototransduction. Interestingly, blue light uniquely induced genes that directly counteract the overactivation of the phototransduction signaling cascade. Lastly, unique gene expression changes in aging photoreceptors included the downregulation of genes involved in membrane potential homeostasis and mitochondrial function, as well as the upregulation of immune response genes. We propose that light stress contributes to the aging transcriptome of photoreceptors, but that there are also other environmental or intrinsic factors involved in age-associated photoreceptor gene expression signatures.


Asunto(s)
Fototransducción , Células Fotorreceptoras , Perfilación de la Expresión Génica , Fototransducción/genética , Células Fotorreceptoras/metabolismo , Transcriptoma
4.
PLoS Genet ; 18(1): e1010021, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100266

RESUMEN

The aging eye experiences physiological changes that include decreased visual function and increased risk of retinal degeneration. Although there are transcriptomic signatures in the aging retina that correlate with these physiological changes, the gene regulatory mechanisms that contribute to cellular homeostasis during aging remain to be determined. Here, we integrated ATAC-seq and RNA-seq data to identify 57 transcription factors that showed differential activity in aging Drosophila photoreceptors. These 57 age-regulated transcription factors include two circadian regulators, Clock and Cycle, that showed sustained increased activity during aging. When we disrupted the Clock:Cycle complex by expressing a dominant negative version of Clock (ClkDN) in adult photoreceptors, we observed changes in expression of 15-20% of genes including key components of the phototransduction machinery and many eye-specific transcription factors. Using ATAC-seq, we showed that expression of ClkDN in photoreceptors leads to changes in activity of 37 transcription factors and causes a progressive decrease in global levels of chromatin accessibility in photoreceptors. Supporting a key role for Clock-dependent transcription in the eye, expression of ClkDN in photoreceptors also induced light-dependent retinal degeneration and increased oxidative stress, independent of light exposure. Together, our data suggests that the circadian regulators Clock and Cycle act as neuroprotective factors in the aging eye by directing gene regulatory networks that maintain expression of the phototransduction machinery and counteract oxidative stress.


Asunto(s)
Proteínas CLOCK/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Degeneración Retiniana/prevención & control , Transcripción Genética/fisiología , Envejecimiento/genética , Animales , Relojes Circadianos , Oscuridad , Fototransducción/genética , Degeneración Retiniana/metabolismo , Transcriptoma
5.
Mol Ecol Resour ; 22(2): 587-601, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34652059

RESUMEN

The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.


Asunto(s)
Aves , Exoma , Animales , Aves/genética , Fototransducción/genética , Opsinas/genética , Secuenciación del Exoma
6.
Plant Cell ; 33(11): 3555-3573, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34427646

RESUMEN

Light and temperature are two key environmental factors that coordinately regulate plant growth and development. Although the mechanisms that integrate signaling mediated by cold and red light have been unraveled, the roles of the blue light photoreceptors cryptochromes in plant responses to cold remain unclear. In this study, we demonstrate that the CRYPTOCHROME2 (CRY2)-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis thaliana. We show that phosphorylated forms of CRY2 induced by blue light are stabilized by cold stress and that cold-stabilized CRY2 competes with the transcription factor HY5 to attenuate the HY5-COP1 interaction, thereby allowing HY5 to accumulate at cold temperatures. Furthermore, our data demonstrate that B-BOX DOMAIN PROTEIN7 (BBX7) and BBX8 function as direct HY5 targets that positively regulate freezing tolerance by modulating the expression of a set of cold-responsive genes, which mainly occurs independently of the C-repeat-binding factor pathway. Our study uncovers a mechanistic framework by which CRY2-mediated blue-light signaling enhances freezing tolerance, shedding light on the molecular mechanisms underlying the crosstalk between cold and light signaling pathways in plants.


Asunto(s)
Aclimatación/genética , Arabidopsis/fisiología , Frío , Fototransducción/genética , Luz , Arabidopsis/genética
7.
Mol Plant ; 14(9): 1539-1553, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34102336

RESUMEN

Although roots are mainly embedded in the soil, recent studies revealed that light regulates mineral nutrient uptake by roots. However, it remains unclear whether the change in root system architecture in response to different rhizosphere nutrient statuses involves light signaling. Here, we report that blue light regulates primary root growth inhibition under phosphate-deficient conditions through the cryptochromes and their downstream signaling factors. We showed that the inhibition of root elongation by low phosphate requires blue light signal perception at the shoot and transduction to the root. In this process, SPA1 and COP1 play a negative role while HY5 plays a positive role. Further experiments revealed that HY5 is able to migrate from the shoot to root and that the shoot-derived HY5 autoactivates root HY5 and regulates primary root growth by directly activating the expression of LPR1, a suppressor of root growth under phosphate starvation. Taken together, our study reveals a regulatory mechanism by which blue light signaling regulates phosphate deficiency-induced primary root growth inhibition, providing new insights into the crosstalk between light and nutrient signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Fototransducción/efectos de la radiación , Luz , Oxidorreductasas/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fototransducción/genética , Oxidorreductasas/genética , Fosfatos/deficiencia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal/fisiología
8.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799970

RESUMEN

Supplemental blue/red lighting accelerated fruit coloring and promoted lycopene synthesis in tomato fruits. Potassium (K) is the most enriched cation in tomato fruits, and its fertigation improved tomato yield and fruit color. However, the effects of supplemental lighting on K uptake and transport by tomatoes and whether supplemental lighting accelerates fruit coloring through enhancing K uptake and transport are still unclear. We investigated the effects of supplemental light-emitting diode (LED) lighting (SL; 100% red, 100% blue; 75% red combined 25% blue) on K uptake in roots and transport in the fruits as well as the fruit coloring of tomatoes (Micro-Tom) grown in an experimental greenhouse in hydroponics. The use of red SL or red combined blue SL enhanced K uptake and K accumulation as well as carotenoid (phytoene, lycopene, γ-carotene, and ß-carotene) content in fruits by increasing photosynthesis, plant growth, and fruit weight. The genes related to ethylene signaling were upregulated by red SL. Quantitative real-time PCR (qRT-PCR) results showed that K transporter genes (SlHAKs) are differentially expressed during fruit development and ripening. The highest-expressed gene was SlHAK10 when fruit reached breaker and ripening. SlHAK3 and SlHAK19 were highly expressed at breaker, and SlHAK18 was highly expressed at ripening. These might be related to the formation of tomato fruit ripening and quality. SlHAK4, SlHAK6, SlHAK8, and SlHAK9 were significantly downregulated with fruit ripening and induced by low K. The expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 were significantly increased by blue SL or red combined blue SL during breaker and ripening. Blue SL or red combined blue SL increased content of phytoene, ß-carotene, α-carotene, and γ-carotene and accelerated fruit coloring by enhancing K uptake in roots and transport in fruits during fruit ripening. This was consistent with the expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 during fruit development and ripening. The key genes of photoreceptors, light signaling transcript factors as well as abscisic acid (ABA) transduction induced by blue SL or red combined blue SL were consistent with the upregulated genes of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 under blue SL and red combined blue SL. The K transport in tomato fruits might be mediated by light signaling and ABA signaling transduction. These results provide valuable information for fruit quality control and the light regulating mechanism of K transport and fruit coloring in tomatoes.


Asunto(s)
Frutas/fisiología , Fototransducción/genética , Proteínas de Plantas/genética , Potasio/metabolismo , Solanum lycopersicum/fisiología , Transporte Biológico , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hidroponía/métodos , Iluminación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentación , Canales de Potasio/genética
9.
Cells ; 10(4)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924466

RESUMEN

Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.


Asunto(s)
Glucógeno Fosforilasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/enzimología , Músculo Esquelético/enzimología , Neoplasias/enzimología , Epitelio Pigmentado de la Retina/enzimología , Esquizofrenia/enzimología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucógeno/metabolismo , Glucógeno Fosforilasa/deficiencia , Enfermedad del Almacenamiento de Glucógeno Tipo V/genética , Enfermedad del Almacenamiento de Glucógeno Tipo V/patología , Humanos , Resistencia a la Insulina , Fototransducción/genética , Contracción Muscular/genética , Músculo Esquelético/patología , Necroptosis/genética , Neoplasias/genética , Neoplasias/patología , Mapeo de Interacción de Proteínas , Epitelio Pigmentado de la Retina/patología , Esquizofrenia/genética , Esquizofrenia/patología , Pez Cebra/genética , Pez Cebra/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627405

RESUMEN

T cells experience complex temporal patterns of stimulus via receptor-ligand-binding interactions with surrounding cells. From these temporal patterns, T cells are able to pick out antigenic signals while establishing self-tolerance. Although features such as duration of antigen binding have been examined, our understanding of how T cells interpret signals with different frequencies or temporal stimulation patterns is relatively unexplored. We engineered T cells to respond to light as a stimulus by building an optogenetically controlled chimeric antigen receptor (optoCAR). We discovered that T cells respond to minute-scale oscillations of activation signal by stimulating optoCAR T cells with tunable pulse trains of light. Systematically scanning signal oscillation period from 1 to 150 min revealed that expression of CD69, a T cell activation marker, reached a local minimum at a period of ∼25 min (corresponding to 5 to 15 min pulse widths). A combination of inhibitors and genetic knockouts suggest that this frequency filtering mechanism lies downstream of the Erk signaling branch of the T cell response network and may involve a negative feedback loop that diminishes Erk activity. The timescale of CD69 filtering corresponds with the duration of T cell encounters with self-peptide-presenting APCs observed via intravital imaging in mice, indicating a potential functional role for temporal filtering in vivo. This study illustrates that the T cell signaling machinery is tuned to temporally filter and interpret time-variant input signals in discriminatory ways.


Asunto(s)
Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Lectinas Tipo C/genética , Fototransducción/genética , Receptores Quiméricos de Antígenos/genética , Autotolerancia , Linfocitos T/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Brefeldino A/farmacología , Ingeniería Celular/métodos , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Células K562 , Lectinas Tipo C/inmunología , Luz , Activación de Linfocitos/efectos de los fármacos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Monensina/farmacología , Optogenética/métodos , Cultivo Primario de Células , Proteína Tirosina Fosfatasa no Receptora Tipo 22/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/citología , Linfocitos T/efectos de la radiación
11.
J Biol Chem ; 296: 100290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453281

RESUMEN

Rho/Ras family small GTPases are known to regulate numerous cellular processes, including cytoskeletal reorganization, cell proliferation, and cell differentiation. These processes are also controlled by Ca2+, and consequently, cross talk between these signals is considered likely. However, systematic quantitative evaluation has not yet been reported. To fill this gap, we constructed optogenetic tools to control the activity of small GTPases (RhoA, Rac1, Cdc42, Ras, Rap, and Ral) using an improved light-inducible dimer system (iLID). We characterized these optogenetic tools with genetically encoded red fluorescence intensity-based small GTPase biosensors and confirmed these optogenetic tools' specificities. Using these optogenetic tools, we investigated calcium mobilization immediately after small GTPase activation. Unexpectedly, we found that a transient intracellular calcium elevation was specifically induced by RhoA activation in RPE1 and HeLa cells. RhoA activation also induced transient intracellular calcium elevation in MDCK and HEK293T cells, suggesting that generally RhoA induces calcium signaling. Interestingly, the molecular mechanisms linking RhoA activation to calcium increases were shown to be different among the different cell types: In RPE1 and HeLa cells, RhoA activated phospholipase C epsilon (PLCε) at the plasma membrane, which in turn induced Ca2+ release from the endoplasmic reticulum (ER). The RhoA-PLCε axis induced calcium-dependent nuclear factor of activated T cells nuclear translocation, suggesting that it does activate intracellular calcium signaling. Conversely, in MDCK and HEK293T cells, RhoA-ROCK-myosin II axis induced the calcium transients. These data suggest universal coordination of RhoA and calcium signaling in cellular processes, such as cellular contraction and gene expression.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Fototransducción/genética , Optogenética/métodos , Proteína de Unión al GTP rhoA/genética , Animales , Técnicas Biosensibles/métodos , Diferenciación Celular , Proliferación Celular , Perros , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Luz , Células de Riñón Canino Madin Darby , Especificidad de Órganos , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Plant Cell ; 32(10): 3155-3169, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32732313

RESUMEN

Light and the circadian clock are two essential external and internal cues affecting seedling development. COLD-REGULATED GENE27 (COR27), which is regulated by cold temperatures and light signals, functions as a key regulator of the circadian clock. Here, we report that COR27 acts as a negative regulator of light signaling. COR27 physically interacts with the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYTOCHROME A1 (SPA1) E3 ubiquitin ligase complex and undergoes COP1-mediated degradation via the 26S proteasome system in the dark. cor27 mutant seedlings exhibit shorter hypocotyls, while transgenic lines overexpressing COR27 show elongated hypocotyls in the light. In addition, light induces the accumulation of COR27. On one hand, accumulated COR27 interacts with ELONGATED HYPOCOTYL5 (HY5) to repress HY5 DNA binding activity. On the other hand, COR27 associates with the chromatin at the PHYTOCHROME INTERACTING FACTOR4 (PIF4) promoter region and upregulates PIF4 expression in a circadian clock-dependent manner. Together, our findings reveal a mechanistic framework whereby COR27 represses photomorphogenesis in the light and provide insights toward how light and the circadian clock synergistically control hypocotyl growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Hipocótilo/crecimiento & desarrollo , Fototransducción/fisiología , Proteínas Represoras/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Fototransducción/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Nat Commun ; 11(1): 3193, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581213

RESUMEN

Breast cancer is the most common type of cancer worldwide and one of the major causes of cancer death in women. Epidemiological studies have established a link between night-shift work and increased cancer risk, suggesting that circadian disruption may play a role in carcinogenesis. Here, we aim to shed light on the effect of chronic jetlag (JL) on mammary tumour development. To do this, we use a mouse model of spontaneous mammary tumourigenesis and subject it to chronic circadian disruption. We observe that circadian disruption significantly increases cancer-cell dissemination and lung metastasis. It also enhances the stemness and tumour-initiating potential of tumour cells and creates an immunosuppressive shift in the tumour microenvironment. Finally, our results suggest that the use of a CXCR2 inhibitor could correct the effect of JL on cancer-cell dissemination and metastasis. Altogether, our data provide a conceptual framework to better understand and manage the effects of chronic circadian disruption on breast cancer progression.


Asunto(s)
Neoplasias de la Mama/patología , Trastornos Cronobiológicos/complicaciones , Microambiente Tumoral/inmunología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Transformación Celular Neoplásica/efectos de los fármacos , Enfermedad Crónica , Trastornos Cronobiológicos/genética , Trastornos Cronobiológicos/inmunología , Citocinas/genética , Femenino , Regulación de la Expresión Génica , Terapia de Inmunosupresión , Fototransducción/genética , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia/prevención & control , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/genética
14.
Sci Rep ; 10(1): 8998, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488013

RESUMEN

Fundus autofluorescence is a valuable imaging tool in the diagnosis of inherited retinal dystrophies. With the advent of gene therapy and the numerous ongoing clinical trials for inherited retinal degenerations, quantifiable and reliable outcome measurements continually need to be identified. In this retrospective analysis, normalized and non-normalized short-wavelength (SW-AF) and near-infrared (NIR-AF) autofluorescence images of ten patients with mutations in visual cycle (VC) genes and nineteen patients with mutations in phototransduction (PT) genes were analyzed. Normalized SW-AF and NIR-AF images appeared darker in all patients with mutations in the VC as compared to patients with mutations in PT despite the use of significantly higher detector settings for image acquisition in the former group. These findings were corroborated by quantitative analysis of non-normalized SW-AF and NIR-AF images; signal intensities were significantly lower in all patients with mutations in VC genes as compared to those with mutations in PT genes. We conclude that qualitative and quantitative SW-AF and NIR-AF images can serve as biomarkers of deficiencies specific to the VC. Additionally, quantitative autofluorescence may have potential for use as an outcome measurement to detect VC activity in conjunction with future therapies for patients with mutations in the VC.


Asunto(s)
Fondo de Ojo , Imagen Óptica/métodos , Distrofias Retinianas/genética , Distrofias Retinianas/fisiopatología , Adolescente , Adulto , Niño , Femenino , Fluorescencia , Humanos , Procesamiento de Imagen Asistido por Computador , Fototransducción/genética , Masculino , Persona de Mediana Edad , Mutación , Epitelio Pigmentado de la Retina/química , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/patología , Adulto Joven
15.
Plant Physiol ; 183(4): 1855-1868, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32439719

RESUMEN

Light is a key environmental cue regulating photomorphogenesis and photosynthesis in plants. However, the molecular mechanisms underlying the interaction between light signaling pathways and photosystem function are unknown. Here, we show that various monochromatic wavelengths of light cooperate to regulate PSII function in Arabidopsis (Arabidopsis thaliana). The photoreceptors cryptochromes and phytochromes modulate the expression of HIGH CHLOROPHYLL FLUORESCENCE173 (HCF173), which is required for PSII biogenesis by regulating PSII core protein D1 synthesis mediated by the transcription factor ELONGATED HYPOCOTYL5 (HY5). HY5 directly binds to the ACGT-containing element ACE motif and G-box cis-element present in the HCF173 promoter and regulates its activity. PSII activity was decreased significantly in hy5 mutants under various monochromatic wavelengths of light. Interestingly, we demonstrate that HY5 also directly regulates the expression of the genes associated with PSII assembly and repair, including ALBINO3, HCF136, HYPERSENSITIVE TO HIGH LIGHT1, etc., which is required for the functional maintenance of PSII under photodamaging conditions. Moreover, deficiency of HY5 broadly decreases the accumulation of other photosystem proteins besides PSII proteins. Thus, our study reveals an important role of light signaling in both biogenesis and functional regulation of the photosystem and provides insight into the link between light signaling and photosynthesis in land plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fototransducción/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fototransducción/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Unión Proteica , Factores de Transcripción/genética
16.
Cells ; 9(4)2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260251

RESUMEN

Studies utilizing large animal models of inherited retinal degeneration (IRD) have proven important in not only the development of translational therapeutic approaches, but also in improving our understanding of disease mechanisms. The dog is the predominant species utilized because spontaneous IRD is common in the canine pet population. Cats are also a source of spontaneous IRDs. Other large animal models with spontaneous IRDs include sheep, horses and non-human primates (NHP). The pig has also proven valuable due to the ease in which transgenic animals can be generated and work is ongoing to produce engineered models of other large animal species including NHP. These large animal models offer important advantages over the widely used laboratory rodent models. The globe size and dimensions more closely parallel those of humans and, most importantly, they have a retinal region of high cone density and denser photoreceptor packing for high acuity vision. Laboratory rodents lack such a retinal region and, as macular disease is a critical cause for vision loss in humans, having a comparable retinal region in model species is particularly important. This review will discuss several large animal models which have been used to study disease mechanisms relevant for the equivalent human IRD.


Asunto(s)
Modelos Animales de Enfermedad , Patrón de Herencia/genética , Degeneración Retiniana/genética , Animales , Fototransducción/genética , Mutación/genética , Células Fotorreceptoras de Vertebrados/patología
17.
Phys Chem Chem Phys ; 22(17): 9195-9203, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32149285

RESUMEN

Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the Pr-to-Pfr transition is facilitated by two intermediate states, called Lumi-R and Meta-R. The molecular structures of the protein in these states are not known and the molecular mechanism of photoconversion is not understood. Here, we apply transient infrared absorption spectroscopy to study the photocycle of the wild-type and Y263F mutant of the phytochrome from Deinococcus radiodurans (DrBphP) from nano- to milliseconds. We identify two sequentially forming Lumi-R states which differ in the local structure surrounding the carbonyl group of the biliverdin D-ring. We also find that the tyrosine at position 263 alters local structure and dynamics around the D-ring and causes an increased rate of Pfr formation. The results shed new light on the mechanism of light-signalling in phytochrome proteins.


Asunto(s)
Deinococcus/química , Deinococcus/genética , Modelos Moleculares , Fitocromo/química , Espectrofotometría Infrarroja , Proteínas Bacterianas/química , Fototransducción/genética , Mutación , Estructura Terciaria de Proteína
18.
Artículo en Inglés | MEDLINE | ID: mdl-32109670

RESUMEN

The sea cucumber Apostichopus japonicus (Selenka)is a typical nocturnal echinoderm, which is believed to be almost completely dependent on light intensity for the regulation of endogenous rhythms. Under conditions of high light intensity, this species shows clear evidence of light avoidance behavior, seeking out shaded areas of reef in which to reside. In this study, we performed RNA-Seq analysis to examine the tentacle transcriptome of A. japonicus specimens that had been subjected to dark and light (5 min and 1 h) conditions. We specifically focused on detecting genes involved in opsin-based light perception, including opsins and members of phototransduction-related pathways. On the basis of comparisons with both vertebrate and invertebrate phototransduction pathways, we determined that components of two of the main metazoan phototransduction pathways were altered in response to illumination. Among the key phototransduction-related genes in tentacles, we identified retinol dehydrogenase, members of the dehydrogenase/reductase family, and myosin III, and also detected a pair of visual pigment-like receptors, peropsin and peropsin-like, the homologous genes of which are believed to have the same function but show opposite expression patterns in response to different light environments. In general, the up-regulation of key genes in sea cucumber exposed to illumination indicated that the tentacles can respond to differences in the light environment at the molecular level.


Asunto(s)
Estructuras Animales/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Fototransducción/genética , Pepinos de Mar/genética , Transcriptoma/efectos de la radiación , Estructuras Animales/efectos de la radiación , Animales , Perfilación de la Expresión Génica , Pepinos de Mar/efectos de la radiación
19.
BMC Genomics ; 21(1): 132, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033529

RESUMEN

BACKGROUND: Retinal degenerative diseases affect millions of people and represent the leading cause of vision loss around the world. Retinal degeneration has been attributed to a wide variety of causes, such as disruption of genes involved in phototransduction, biosynthesis, folding of the rhodopsin molecule, and the structural support of the retina. The molecular pathogenesis of the biological events in retinal degeneration is unclear; however, the molecular basis of the retinal pathological defect can be potentially determined by gene-expression profiling of the whole retina. In the present study, we analyzed the differential gene expression profile of the retina from a wild-type zebrafish and phosphodiesterase 6c (pde6c) mutant. RESULTS: The datasets were downloaded from the Sequence Read Archive (SRA), and adaptors and unbiased bases were removed, and sequences were checked to ensure the quality. The reads were further aligned to the reference genome of zebrafish, and the gene expression was calculated. The differentially expressed genes (DEGs) were filtered based on the log fold change (logFC) (±4) and p-values (p < 0.001). We performed gene annotation (molecular function [MF], biological process [BP], cellular component [CC]), and determined the functional pathways Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for the DEGs. Our result showed 216 upregulated and 3527 downregulated genes between normal and pde6c mutant zebrafish. These DEGs are involved in various KEGG pathways, such as the phototransduction (12 genes), mRNA surveillance (17 genes), phagosome (25 genes), glycolysis/gluconeogenesis (15 genes), adrenergic signaling in cardiomyocytes (29 genes), ribosome (20 genes), the citrate cycle (TCA cycle; 8 genes), insulin signaling (24 genes), oxidative phosphorylation (20 genes), and RNA transport (22 genes) pathways. Many more of all the pathway genes were down-regulated, while fewer were up-regulated in the retina of pde6c mutant zebrafish. CONCLUSIONS: Our data strongly indicate that, among these genes, the above-mentioned pathways' genes as well as calcium-binding, neural damage, peptidase, immunological, and apoptosis proteins are mostly involved in the retinal and neural degeneration that cause abnormalities in photoreceptors or retinal pigment epithelium (RPE) cells.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Degeneración Retiniana/genética , Proteínas de Pez Cebra/genética , Animales , Ontología de Genes , Redes Reguladoras de Genes , Fototransducción/genética , Mutación , RNA-Seq , Retina/metabolismo , Pez Cebra/genética
20.
PLoS One ; 15(1): e0222480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945058

RESUMEN

Light is a crucial signal that regulates many aspects of plant physiology and growth including the development of stomata, the pores in the epidermal surface of the leaf. Light signals positively regulate stomatal development leading to changes in stomatal density and stomatal index (SI; the proportion of cells in the epidermis that are stomata). Both phytochrome and cryptochrome photoreceptors are required to regulate stomatal development in response to light. The transcription factor ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light signalling, acting downstream of photoreceptors. We hypothesised that HY5 could regulate stomatal development in response to light signals due to the putative presence of HY5 binding sites in the promoter of the STOMAGEN (STOM) gene, which encodes a peptide regulator of stomatal development. Our analysis shows that HY5 does have the potential to regulate the STOM promoter in vitro and that HY5 is expressed in both the epidermis and mesophyll. However, analysis of hy5 and hy5 hyh double mutants (HYH; HY5-HOMOLOG), found that they had normal stomatal development under different light conditions and the expression of stomatal developmental genes was not perturbed following light shift experiments. Analysis of stable lines overexpressing HY5 also showed no change in stomatal development or the expression of stomatal developmental genes. We therefore conclude that whilst HY5 has the potential to regulate the expression of STOM, it does not have a major role in regulating stomatal development in response to light signals.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión al ADN/genética , Arabidopsis/crecimiento & desarrollo , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas/genética , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Luz , Fototransducción/genética , Fitocromo/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...